2013 EOS/ESD Symposium for Factory Issues Evaluation of Length to Diameter Ratio of Grounding Wires Ma Tao (ma tao@everfeed.com.sg) Yohan GOH (yohan goh@everfeed.com.sg)

Marcus KOH (marcus_koh@everfeed.com.sg)

1. To understand skin effect

2. To determine length-to-diameter ratio

3. To maintain a safe ESD ground & meet "I ohm law"

Outline

- 1. Problem statement
- 2. Skin effect
- 3. Formulas
- 4. Comparison between different types of wires (Single, Stranded and Braided)
- 5. Comparison between wires made of different materials (Aluminium, Copper and Silver)
- 6. Conclusion
- 7. References

1. Problem Statement

Single Wire Stranded Wire Braided Wire

Which one to select??

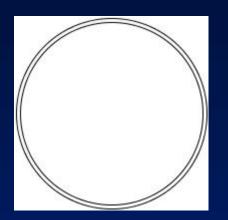
2. Skin Effect

Skin effect is the tendency of an AC current to become distributed within a conductor such that the current density is largest near the surface, and decreases with greater depths in the conductor.

Skin depth: 63% electric current flows at the skin of the conductor

Skin effect causes resistance of conductor to increase

3. Formulas


1. Skin Depth

- Vacuum Permeability
- Relative Permeability
- Conductivity
- 2. Current Frequency:Rise Time

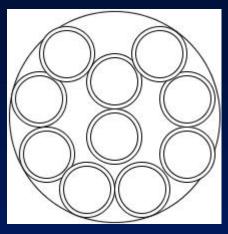
$$\delta = \frac{1}{\sqrt{\pi f \mu_0 \mu_r \sigma}}$$
$$\mu_0 = 4\pi \times 10^{-7} H/m$$
$$\mu_r = 1$$
$$\sigma$$
$$f = \frac{1}{\pi t_r}$$

tr

4.1. Single Wire

Cross-section

$$R_{single} = \frac{l}{\sigma \pi d \delta} = \frac{l}{\pi d} \sqrt{\frac{\mu_0}{\sigma t_r}}$$


$$\frac{l}{d} = \pi \sqrt{\frac{\sigma t_r}{\mu_0}}$$

Current flowed uniformly through a layer of thickness δ

4.1 Single Wire

Rise time (ns)	Frequency (MHz)	Skin depth (um)	Ratio I/d
318.31	1	65.19	12206
31.83	10	20.62	3860
3.18	100	6.52	1220
0.318	1000	2.06	386

4.2 Stranded wire

Cross-section, with the same copper area with single wire

$$\frac{\pi d^2}{4} = n \frac{\pi {d_s}^2}{4} \quad \longrightarrow \quad d_s = \frac{d}{\sqrt{n}}$$

For example, when n=10, $d_s = 0.3162d$

$$R_{stranded} \approx \frac{l}{n\sigma\pi d_s\delta} \longrightarrow \frac{l}{d} = \pi \sqrt{\frac{n\sigma t_r}{\mu_0}}$$

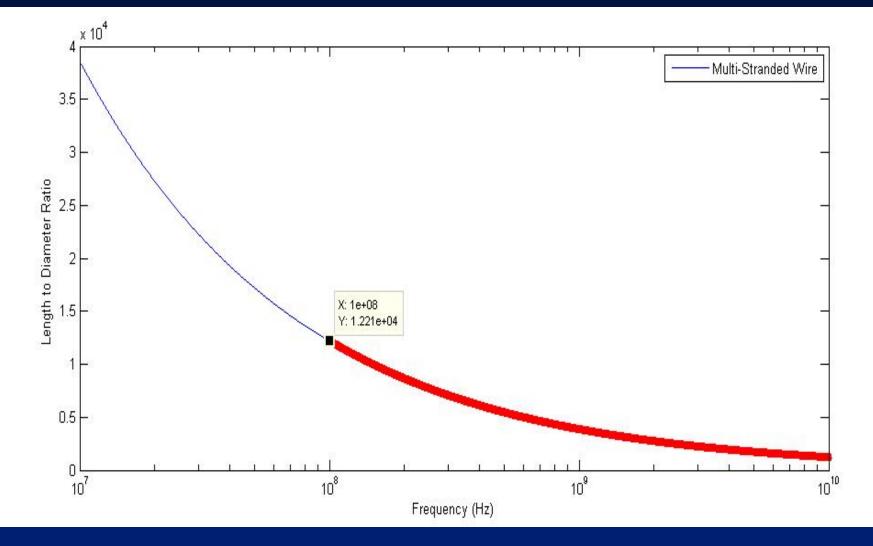
Slide 9

4.2 Stranded wire

Rise time (ns)	Frequency (MHz)	Skin depth (um)	Ratio I/d
318.31	1	65.19	38597.13
31.83	10	20.62	12205.48
3.18	100	6.52	3859.71
0.32	1000	2.06	1220.55

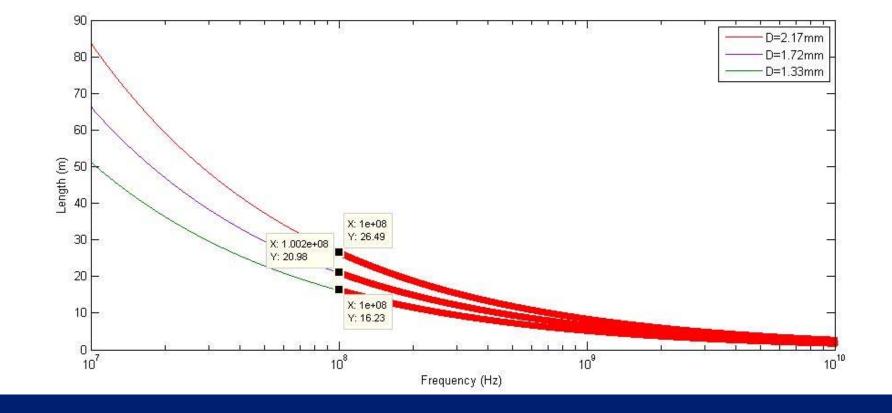
4.3 Braided Wire

Cross-section, with the same copper area with single wire


$$\frac{\pi d^2}{4} = n \frac{\pi d_s^2}{4} \longrightarrow d_s = \frac{d}{\sqrt{n}}$$
For example, when n=25, $d_s = 0.2d$

$$R_{stranded} \approx \frac{l}{n\sigma\pi d_s\delta} \longrightarrow \frac{l}{d} = \pi \sqrt{\frac{n\sigma t_r}{\mu_0}}$$

4.3 Braided Wire


Rise time (ns)	Frequency (MHz)	Skin depth (um)	Ratio I/d
318.31	1	65.19	86300.35
31.83	10	20.62	27290.57
3.18	100	6.52	8630.03
0.32	1000	2.06	2729.06

4.4 Ratio Against Frequency

Slide 13

4.5 Length Against Frequency

5. Comparison of AI, Cu and Ag Wires

	Aluminum	Copper	Silver
Conductivity	3.50E+07	5.96E+07	6.30E+07
Relative Permeability	1.000022	0.999994	0.99998

5. Comparison of AI, Cu and Ag Wires

	Ratio I/d		
Frequency (MHz)	AI	Cu	Ag
1	9354	12206	12549
10	2958	3860	3968
100	935	1220	1254
1000	295	386	396

6. Conclusion

Skin effect is severe at high frequency.
 Diameter of every single wire >> skin depth,

2. Increasing frequency -> reducing skin depth.

3. Choose the most cost-effective ones & meets "1 ohm rule".

7. References

[1] E. S. D. Association, "ANSI/ESD S6.1-2005, Revision of ANSI/ESD S6.1-1999, For the Protection of Electrostatic Discharge Susceptible Items Grounding," ESD Association, 2005, p. 14.

[2] W. H. Hayt, *Engineering electromagnetics*: McGraw-Hill Book Co., 1981.

[3] H. A. Wheeler, "Formulas for the Skin Effect," *Proceedings of the IRE,* vol. 30, no. 9, pp. 412-424, 1942.

[4] M. I. Montrose, and I. E. C. Society, *Printed circuit board design techniques for EMC compliance*: IEEE Press, 1996.

[5] D. Fink, and H. W. Beaty, *Standard Handbook for Electrical Engineers*: McGraw-Hill Companies, Incorporated, 2006.

[6] F. Murray, Jr. Hawkins, Louisiana State U, A Note on the Skin Effect, Journal of Petroleum Technology, 1956.

Thank You